מתמטיקה לכיתה י' חלק א'

149 כל הזכויות שמורות - יצחק שלו & אתי עוזרי - מתמטיקה לכיתה י׳- אשכול מדעים וחברה - אין לשכפל ללא אישור בכתב מהמחברים © (שתיים או יותר)או איחוד קבוצות (אחד או יותר) תוספת של משתנה בפרק זה נתמקד בחישוב מדדי מרכז (ממוצע, חציון ושכיח) אחרי תוספת של משתנה אחד או יותר או אחרי איחוד של שתי קבוצות או יותר. המידע מתאר מצבים מחיי היום יום בהקשר מדעי וחברתי, והוא מוצג בעזרת רשימת נתונים, טבלת שכיחויות, דיאגרמת עמודות או דיאגרמת עיגול. יושם דגש במציאת הממוצע המשוקלל. בפרק הקודם חישבנו את מדדי המרכז, כאשר היה שינוי בערך אחד או יותר של המשתנה. כלומר, סכום ערכי המשתנים השתנה, אך מספרם (סכום השכיחויות) לא השתנה. כאן נתמקד במקרים, שבהם מספר המשתנים יגדל או יקטן, כלומר סכום השכיחויות משתנה. חלק מהנושאים שנעסוק בהם נלמד בחטיבת הביניים, ובפרק זה נעמיק ונרחיב בלימוד הנושא בהקשר מדעי וחברתי. מה נלמד? ✔ חישוב מדדי המרכז, כאשר יש תוספת של משתנה אחד או יותר. ✔ חישוב מדדי המרכז לאחר איחוד של שתי קבוצות או יותר ושימוש בממוצע משוקלל. .175-174 התשובות לתרגילים בפרק זה – בעמ' .א תוספת של משתנה (אחד או יותר) בסעיף זה נתמקד באומדן ובחישוב של מדדי מרכז (ממוצע, חציון ושכיח) אחרי תוספת של משתנה אחד או יותר. דוגמה פתורה .72 מבחנים הוא 5 הציון הממוצע של תלמיד ב- . א .75 התלמיד נבחן במבחן נוסף, והוא רוצה שממוצע ציוניו בששת המבחנים יהיה המבחנים? נמקו. 5 האם ציונו במבחן השישי צריך להיות גדול / קטן / שווה בהשוואה לממוצע של . ב אם לאחר שהתלמיד נבחן במבחן הנוסף הממוצע שלו לא השתנה, מה ציונו במבחן זה? . ג המבחנים? 6 . מה ממוצע ציוניו ב- 96 התלמיד נבחן במבחן השישי וקיבל ציון . ד התלמיד הגיש ערעור על ציון המבחן, שבו קיבל את הציון הנמוך ביותר. נקודות. 6 המורה קיבל את הערעור והעלה את הציון ב- ( 1) המבחנים לאחר הערעור? 6 מהו הממוצע של ( 2) האם החציון של ציוני המבחן אחרי הערעור השתנה בהשוואה לחציון ציוני המבחן לפני הערעור? פתרון: . א , עליו להגדיל את סכום ערכי 75 . כדי להגדיל את הממוצע ל- 72 הממוצע הנוכחי של התלמיד הוא

RkJQdWJsaXNoZXIy NDA4MTM=